عنوان : استفاده از شبکه های عصبی مصنوعی مبتنی بر الگوریتم رزونانس تطبیقی در بازشناسی چهره با توجه به مزایای ذاتی این نوع شبکه ها
برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
چکیده:
همگام با پیشرفت تکنولوژی نیاز به سیستم های بازشناسی به هنگام چهره به طور فزاینده ای رو به گسترش می باشد. این امر کلاسهبندیهای متعارف و معمول در زمینه بازشناسی چهره را با چالشهایی مواجه ساخته است. زمان آموزش طولانی، پیکربندی و ساختار ثابت کلاسه بندی های موجود و عدم وجود توانایی در یادگیری نمونه های جدید بدون فراموش کردن نمونه های قبلی، از اهم این موارد می باشد. ایده استفاده از شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی می تواند این چالشها را تا حد زیادی مرتفع کند. این برتری ها به دلیل خصوصیات ذاتی و پویاییهای این نوع از شبکه های عصبی می باشد. نتایج شبیه سازیها حکایت از برتری نسبی اما کمرنگ صحت کلاسه بندی در شبکه های عصبی پرسپترون چند لایه، نسبت به شبکه های عصبی مذکور دارند. سرعت یادگیری در شبکه های مذکور بسیار بیشتر از پرسپترون چند لایه بوده و تنظیم پارامترهای آن بسیار ساده تر می باشد. انتخاب پارامتر مراقبت به عنوان مهمترین پارامتر شبکه های مذکور، تقریباً در نیمی از بازه مجاز آن، عملکرد بهینه شبکه را تضمین می کند. همچنین انتخاب ویژگی های موثر با استفاده از الگوریتم ژنتیک و شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی، درصد صحت کلاسه بندی را به طور قابل توجهی افزایش داده است.
شکل 1-1 روش بردار سازی تصاویر…………………………………………………………………………………………….. 7
شکل 1-2 یک فضای دو بعدی به همراه دو مولفه اساسی مجموعه نمونه ها. P1 و P2 دو بردار مولفه اساسی می باشند 8
شکل 1-3 برخی از صورت های ویژه پایگاه داده ORL…………………………………………………………… 9
شکل 1-4- بازنمایی یک چهره توسط چهره های ویژه. مجموعه ضرایب، بردار ویژگی چهره را مشخص می نماید 9
شکل 2-1: شمای کلی ماژول ART: ورودی تحت کدگذاری مکمل وارد می شود و نودهای لایه F2 همان خوشه های شبکه هستند……………………………………………………………………………………………………………………………………………… 23
شکل 2-2- فلوچارت کلی ماژول ART…………………………………………………………………………………….. 24
شکل 2-3- پیکربندی کلی شبکه عصبی Fuzzy ART MAP…………………………………………. 27
شکل 2-4 میانگین ( انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش و آزمایش با استفاده از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با استفاده از استراتژی میانگین گیری برای مقادیر افزایشی پارامتر مراقبت با متد آموزش تک تکراری………………………………………………………………………………………………………………………… 47
شکل 2-5 میانگین ( انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش، آزمایش و ارزیابی با استفاده از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با استفاده از استراتژی میانگین گیری، برای مقادیرمختلف پارامتر مراقبت با متدآموزش همراه با ارزیابی……………………………………………………………………………………………… 49
شکل 2-6 میانگین ( انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش و آزمایش با استفاده از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با استفاده از استراتژی میانگین گیری، برای مقادیر مختلف پارامتر مراقبت با متد آموزش همراه با آموزش کامل …………………………………………………………………….. 50
شکل 3-1 تصاویر بانک چهره ORL، 10تصویر برای هر یک از 40 نفر………………………………… 54
شکل 3-2- ساختار SFAM – ورودی به لایه F0 اعمال می شود و درF1 کدگذاری مکمل انجام شده و بعد ورودی دو برابر می شود………………………………………………………………………………………………………………………………………………….. 56
شکل 3-3- درصد صحت کلاسه بندی داده های آموزش ( انحراف معیار) در SFAM به ازای مقادیر مختلف پارامتر مراقبت با استفاده از متد آموزش تک تکراری و استراتژی میانگین گیری…………………………. 59
شکل 3-4- تعداد نودها (خوشه ها)ی تشکیل شده در ماژول Fuzzy ART در شبکه عصبی SFAM، به ازای مقادیر مختلف پارامتر مراقبت و استفاده از متد آموزش تک تکراری و استراتژی میانگین گیری………………….. 59
شکل 3-5- زمان مورد نیاز برای آموزش شبکه عصبی SFAM به ازای مقادیر مختلف پارامتر مراقبت و استفاده از متد آموزش تک تکراری و استراتژی میانگین گیری………………………………………………………………………………………… 60
شکل 3-6 صحت کلاسه بندی الگوریتم های مختلف پس انتشار خطا به عقب برای شبکه عصبی MLP و دو حالت آموزش سریع و آهسته برای SFAM به ازای تعداد نمونه های آموزش مختلف………………………………… 68
فهرست جداول
جدول 3-1- نتایج شبیه سازیها با استفاده از شبکه عصبی SFAM در مود آموزشی تک تکراری با استفاده از استراتژی میانگین گیری……………………………………………………………………………………………………………………………………………….. 63
جدول 3-2: نتایج شبیه سازیها با استفاده از SFAM درحالت آموزش آهسته با استفاده از استراتژی میانگین گیری 64
جدول 3-3- نتایج شبیه سازیها با استفاده از شبکه عصبی MLP و به کارگیری چهار الگوریتم معروف پس انتشار خطا به عقب…………………………………………………………………………………………………………………………………………………………. 67
جدول 3-4: نتایج حاصله از انتخاب ویژگی های موثر با استفاده از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 2 نمونه برای آموزش……………………………………………………………………………………………………………………… 76
جدول 3-5: نتایج حاصله از انتخاب ویژگی های موثر با استفاده از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 4 نمونه برای آموزش……………………………………………………………………………………………………………………… 77
جدول 3-6: نتایج حاصله از انتخاب ویژگی های موثر با استفاده از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 6 نمونه برای آموزش……………………………………………………………………………………………………………………… 78
پیشگفتار:
یکی از مسائل قدیمی و چالش برانگیز در زمینه هوش مصنوعی، موضوع بازشناسی چهره می باشد. قدمت تحقیقات در این زمینه مربوط به دهه هفتاد میلادی می باشد.علیرغم تحقیقات فراوانی که در حواشی این مسئله صورت گرفته، همواره عرصه های تازه و بکر برای پژوهش وجود داشته است. در حال حاضر محققین با زمینه های کاری کاملاً متفاوت اعم از روانشناسی، بازشناسی الگو،شبکه های عصبی، بینایی ماشین و گرافیک، با انگیزه های متفاوت در این رابطه فعالیت می کنند. در پایان نامه حاضر پس از طرح یک سری چالشهای موجود در زمینه بازشناسی چهره با رویکردی مبتنی بر بکارگیری دسته ای خاص از شبکه های عصبی مصنوعی به عنوان کلاسه بند، سعی شده چالشهای مذکور تا حد امکان مرتفع شود.